নিচের চারটি নিয়মে বাইনারি নম্বরের যোগ করা যায়
(1) 0 + 0 = 0 অর্থাৎ শূন্যের সঙ্গে শূন্য যোগ করলে শূন্য হয়।
(2) 1 + 0 = 1 অর্থাৎ এক এর সাথে শূন্য যোগ করলে 1 হয়।
(3) 0 + 1 = 1 অর্থাৎ 0 এর সাথে এক যোগ করলে 1 হয়।
(4) 1 + 1 = 0 হাতে থাকে 1 ।
বাইনারি যোগের ক্ষেত্রে ডান দিক থেকে বাম দিকে যোগ হবে এবং হাতের এক বাম দিকের অংকগুলোর সাথে যোগ হবে।
এবার আমরা বাইনারি কয়েকটি যোগ করব।
এখন, 1101.01= 1x23+1 x 22+ 1x21+1 x 20+0x2-1+ 1x2-2
=8+4+1+.25 = 13.25
বাইনারি সংখ্যায় বিয়োগ নিচের নিয়মগুলো মেনে চলে।
বাইনারি সংখ্যার ভাগ দশমিক পদ্ধতির নিয়মেই করা হয়। নিচের উদাহরণগুলো লক্ষ করলেই তা বোঝা যাবে।
কম্পিউটার ব্যবস্থার ইলেকট্রনিক সার্কিট বা বর্তনীর কার্যনীতির ভিত্তি হলো জর্জ বুলি (George Boole) আবিষ্কৃত বুলিয়ান বীজগণিতের নীতি। বুলিয়ান বীজগণিত এমন যৌক্তিক বর্ণনা (logical statement) নিয়ে আলোচনা করে যার দুটি মাত্র মান থাকে হয় সত্যমান (true value) না হয় মিথ্যা মান (false value)। বাইনারি পদ্ধতি অনুযায়ী ডিজিটাল বর্তনী শুধু দুটি অবস্থা 'অন' (ON) এবং 'অফ' (OFF) চিনতে পারে। বুলিয়ান চলক যা যৌক্তিক বর্ণনায় সত্য মানকে (truevalue) কে । এবং এর মিথ্যা মানকে 0 দ্বারা নির্দেশ করা হয়। বুলিয়ান বীজগণিতে তিনটি মৌলিক অপারেটর ব্যবহার করা হয় ; এরা হলো (i) OR, (ii) AND, (iii) NOT । বুলিয়ান বীজগণিতে
(i) যোগ চিহ্ন + দ্বারা OR বোঝানো হয়। Y = A + B এটা পড়তে হয় Y, A অথবা B এর সমান।
(ii) গুণ চিহ্ন (x বা.) দ্বারা AND বোঝানো হয়। Y = A B, পড়তে হয় Y, A এবং এর B মান সমান।
(iii) বার চিহ্ন (—) দ্বারা NOT বোঝানো হয়। Y =Ā, একে Y, NOT A হিসাবে পড়তে হয়, Y এর মান A এর মানের সমান নয়।
আরও দেখুন...